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The object of this thesis is to investigate the extent
to which the elementary properties of the basic concepts of
topology remain valid in the more general concept of cov-
ered spaces. It is shown that virtually all of the proper-
ties of the topological operations of closure, interior
and derivative are retained despite the weak hypotheses. 1In
contrast to the case for topological spaces, however, it is
found that the derivative and closure operations do not dis-
ftribute over union of sets, and that the interior operation
does not distribute over intersection of sets. An addition-
al key difference found is that while complements of open
sets are closed, the complement of a closed set in general
is not open.

Several of the basic properties of set functions and of
the separation axioms are shown to hold true under these
more general conditions.

Next we investigate a particular form of disconnected-
ness for arbitrary subsets in a space. It is found that ex-
treme degrees of connectedness are accompanied by specific
topological properties, and in one case the complete topolog-

ical structure is imposed.



Finally we define a limit point digraph correspond-
ing to a covered space in terms of singleton set limit
points. It is shown that a connected digraph can represent
only a space which is connected in the particular sense
previously mentioned, but that the converse relationship
may not necessarily hold.

We also show a one-to-one correspondence between
simplicial maps of these digraphs and a class of set func-

tions which, on topological spaces, are homeomorphisms.
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Chapter 0

Preliminaries

Introduction

In this thesis we are mainly concerned with investi-
gating the elementary but basic topological concepts of
neighborhoods, limit points, and closure, as applied to a
space with a more general structure than that of a topology.
Some work has been done in determining the nature of these
concepts under general hypotheses, such as by Day [4],
Barb¥lat [2] and Sierpinski [9]. But in all cases known

to us, except that of Sierpinski, the authors have retained

the properties that provide a space with topological structure.

Our purpose here 1s to conduct our investigation with the
bare minimum of hypotheses; such work is essentially due to
Doyle [5]. In addition we investigate the nature of the
open sets through a generalized definition of connectedness,

and the nature of 1limit points through a directed graph.

Definitions and Notations

We use the usual set theoretic operations and notations
as in Dugundji [6]. The complement of a set A relative to a
set X 1s denoted by X-A; if A is a singleton set, {a}, we
write its complement as X-a. The more elementary results

from set theory are assumed.



Definition 0.1: By a (Doyle) covered space (X,N) 1s meant

an arbitrary set X and a collection ¥ of subsets of X such
that U{HeW} =X.

Clearly every topological space (X,Jﬂ is a covered
space, for the collection & contains the set X as a member.
But obviously there are many covered spaces which are not
fopologilcal spaces; for example, we may take a non-degenerate
set X and take M to be the collection of singleton sets of
elements from X.

A more interesting example of a non-~topological covered
space 1s the following space, which henceforth we refer to as
the "three point covered space”: Let X = {a,b,c} and
¥ = {{a,c}, {b,c}}; clearly the union of all sets in ¥ equals
X, and we do not have any of the three topological axioms
satisfied.

We note that either the set X or the collectior1}¥1nay
be empty. However, this situation is not permitted in a
topological structure, and as such we assume, withdut any
loss of generality, that neither X nor M is empty.

At this point, we wish to point out a rather close
connection between Sierpinski's (V) spaces, and Doyle's
covered spaces. Both of these generalize "topology on a
set". A covered space (X,¥) in general gives rise to many
(V) spaces since we may assign to each point x in X a sub-

collection of A; this is not uniquely assignable. The




natural one 1s to take all the elements in the covering that
contain a fixed element to be the neighborhood system of that
element. With this definition each covered space uniquely
determines a (V) space. What is natural in the other direction
is not necessarily straightforward, and there seem to be
several ways of going about 1t. We only remark that between
the twc approaches (of Sierpinski and Doyle) any theories
based on either that would be a generalization of topological
notions should coincide. Probably a (V) space gives rise to
more trivia than a covered space, but these vanish through
the expedient of equivalence classes.

Definition 0.2: A subset H of X is said to be open if it

belongs to the collection M.
Remark: In a (V) space, H is open iff its complement is
closed.

In the three point covered space, the set {a,c} is open,
but the set {a,bl} is not.

Definition 0.3: An open set H is said to be a neighborhood

(open neighborhood) of a point x in X if xeH.

Definition O0.4: A point x is said to be a limit point of a

subset A of X if every neighborhood of x intersects A-x.

Definition 0.5: The derived set A' of a subset A of X is

the set of all limit points of A.

In the three point covered space it can be seen that
{a,b} 1is the derived set of the set A = {a,c}; the open
set {a,c} is a neighborhood of x=a, and clearly it inter-

sects the set {{a,c}-a} at the point c¢c. Since this 1s the



only neighborhood of a, it follows that a is a limit point
of A. But ¢ is not, for {b,c} is a neighborhood of c, but
{b,etN{{a,cl-c}=4.

Definition 0.6: A subset F of X is said to be closed if

it contains all of its limit points.

Definition 0.7: The closure of an arbitrary subset A,

denoted A, is AUA'.

Definition 0.8: The interior of an arbitrary subset A,

denoted Int A, is X-X-A.

Definition 0.9: The boundary of an arbitrary subset A,
denoted Bd A, is A NX-A.

For conciseness we state that the separation axioms,
T, through T5, are taken as in Dugundji [6], and so are

the definitions for sequences and convergence of sequences.



Chapter I

The Topological Operations

Let (X,ﬁ) be an arbitrary covered space. The purpose
of this chapter is to investigate these general spaces with
respect to some of the topological operations, viz. closure,
derived set, interior. We also investigate some of the more
elementary properties of continuity and separation axioms
as applied to these covered spaces.

All sets considered in this chapter are assumed to be

subsets of X, in the context of the covered space (X, M.

1.1 Derived Sets

Lemma 1.1.1: Let ACB. Then A'CB'.

Proof: If x € A', then every neighborhood of x intersects
A-x. Since ACB, A-xCB-x. Thus every set which inter-
sects A-x must intersect B-x, so every neighborhood of x
intersects B-x. Hence x ¢ B'. |

Lemma 1.1.2: For any set A, x € A' iff x & A-x.

Proof: If x € A-x, then x & (A-x)U(A-x)', or x € (A-x)'.
Thus by Lemma 1.1.1, x ¢ A'. If x € A', every neighborhood
of x intersects A-X, so every neighborhood of x intersects
(A-x)-x. Thus x € (A-x)', and hence x¢ (A—X)U(A—X)'=K:;;.

Lemma 1.1.3: The closure of every set is closed.




Proof: Let x be a limit point of A such that x ¢ A. Let H
be any neighborhood of x. Since H intersects A-x, it must
intersect A'-x or A-x. Suppose H does not intersect A-x.
Then H is a neighborhood of some point y € A', y # x. But
since y is a 1limit point of A, H must intersect A-y, and
thus also A itself. Since x ¢ &, x £ A, and thus H inter-
sects A-x. This is a contradiction. ]

Lemma 1.1.4: A set A is closed iff A = A.

Proof: A is closed iff ADA'. But ADA' iff A = AUA', or
equivalently A = A. 0§

Lemma 1.1.5: @' = @,

Proof: If x € @', then every neighborhood of x intersects {.
But no set can intersect g. i

Lemma 1.1.6: @ = @.

Proof: @ = pup' = gug=g. 1
We now state and prove our main theorem regarding the
derived sets in (X,M).

Theorem 1.1.7: The derived set operation A>A' on subsets

of X has the following properties:
(1) for any point x € X, x £ {x}';
(2) A'UB'C (AUB)';
(3) A" C AUA';
(4) g' = 2.
Proof: (1) If x e {x}', then x ¢ {x}-%, or x ¢ 7 =g.
(2) Since AC AUB, A' C (AUB)'. Similarly we have B'"C(AUB)'.

Combining we obtain A'UB' C (AUB)'.



(3) & = AUA', so (A)' = (AVA')'DA'UA". Now A is closed,
so AD(A)', or AUA'"D(R)'. Combining we have AUA'DA"UA"',
and since A"UA'DA", we find AUA'DA".

(4) was proven in lemma 1.1.5. §

For covered spaces whose open sets form a topology, the
second property of theorem 1.1.7 becomes an equality, and the
fheorem becomes the following familiar result: any operation
on subsets of an arbitrary set X satisfying the four properties
of the theorem, with (2) as an equality, determines a unigue
topology on X, and, for the topology, that operation is the
derived set operation. That we do not have equality for

covered spaces is illustrated by the three point covered

i}

space. Consider the subsets A {a}, B = {b}. Clearly
A' = g and B' = g, so A'UB' = g. But (AUB)' = {a,bl}"’
= {c}. Hence for covered spaces we cannot expect to have

equality.

1.2 Closure
We now proceed similarly to examine the closure operator.

Lemma 1.2.1: Let A be a subset of B. Then ACB.

Proof: Since ACB, A'CB', and so AUA'CAUB'., Similarly
ACB implies AUB'C BUB'. Thus AUA'CBUB', or ACE. I

We now state and prove our main theorem regarding the
closure operation in (X,¥).

Theorem 1.2.2: The closure operation A+A on subsets of X

has the following properties;




(1) ACH;
(2) AUB C AUB;
(3) @ = g.
(4) & = L.

Proof: (1) Clearly ACAUA' = L.
(2) Since ACAUB, ACAUB. Similarly we find BCAUB. Com-
bining we have AUB CA UB.
(3) was proven in lemma 1.1.6.
(4) follows immediately from the fact that A is a closed set
and lemma 1.1.4. 0

For covered spaces whose open sets form a topology, the
second property of theorem 1.2.2 becomes an equality, with
the result being Kuratowski's closure axioms and a uniqueness
Theorem similar to the one previously mentioned. That we do
not have equality for covered spaces is illustrated again
by the three point covered space, using the same subseté
A and B. For both A and B, the set equals its closure, but

the closure of AUB is the whole set, X.

1.3 Interior Operation

Finally we consider the properties of the interior
operation.

Lemma 1.3.1: Let A be a subset of B. Then Int A 1s a

subset of Int B.

Proof: If ACB, then X-BCX-A. So X-BCX-A. Hence X~X-A

C X-X=B, or Int ACInt B. 8



We now state and prove our main theorem regarding the
interior operation in (X,¥).

Theorem 1.3.2: The interior operation A»Int A on subsets

of X has the following properties:
(1) Int ACA;
(2) Int ANInt BDInt ANB;
(3) Int X = X;
(4) Int (Int A) = Int A;
(5) X-A is closed iff Int A = A,
Proof: (1) X-ACX-A, so ADX-X-A = Int A.
(2) Now ANBCA, so Int ANBCInt A. Similarly Int ANB
CInt B. Combining we have Int ANBCInt A NInt B.

(3) Int X = X-X-X = X-@ = X-§ = X.

(4) Int (Int A) = X-X-Int A = X-X-(X-X-A) = X-(¥-A) = X-X-A
= Int A, since X-A = ¥=A by theorem 1.2.2(4).
(5) X-A is closed iff X-A = X-A, or equivalently A = X-X-A.
But this means A = Int A. l

Provided the second property above is an equality, any
operation with these properties would, as before, determine
a unique topology for which the given operation would be the
interior operation. And although equality can be proved for
covered spaces whose open sets form a topology, inclusion is
the best result possible without that structure. As an

example we again mention the three point covered space used

previously, taking A = {a,c} and B = {b,c}. Clearly Int A
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= A and Int B = B, so Int ANInt B is not empty. But
Int(ANB) = Int {c} which is empty. Hence we cannot generally

expect to have equality.

1.4 Some Additional Results

Before examining these operations in greater depth,
we present two further results of interest.

Theorem 1.4.1: The closure of any set is the union of the

interior and the boundary of that set.
Proof: A = (EN(X-X=£)) U(EN(T=R)) = Bd AU(ENInt A) =
Bd AUInt A. D

Theorem 1.4.2: The complement of the interior of a set is

closed.

Proof: X-Int A = X-A, which is closed. §

1.5 The Open and Closed Sets

We now state and prove for closure and interior two
equivalent formulations, which are known for topological
spaces. Following usual procedures, the union of an empty
collection of sets is empty, and the intersection of an
empty collection of sets is the whole set, X.

Theorem 1.5.1: Let A be a subset of X. Then

(1) & = M {F|F closed DA},
(2) Int A = | J{H|H openCA}.
Proof: (1) Let S = M{F|F closed DA}. Since A is closed,

ADNF, or ADS. Now let F be a closed set containing A.
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Then FDA. But F is closed, so F = F, and FDA. Since this
is true for every closed set F containing A, we have SDA.

Thus S = A.

(2) Now let S =\J{H|H openCA}. Let x € S. Then x € H for
some open HCA. So x £ X-A. And since H is a neighborhood

of x which does not intersect X-A, we have x ¢ (X-A)'. Thus

x £ X-A, and hence x € X-X-A, or x € Int A. Now let x € Int A.
Then x ¢ X-A. So x £ X-A and x ¢ (X-A)'. Since x is not a
limit point of X-A, there exists some neighborhood H such that
HO ((X-A)-x) = @. But since x £ X-A, we may write HN(X-A) = #.
This means HCA. Thus x € S. Hence S = Int A. §

Theorem 1.5.2: The intersection of any collection of closed

sets is closed.
Proof: Let S be the intersection of an arbitrary collection
of closed sets. If the collection is empty, S = X, which is
a closed set. Also if S = @, then it is closed. Now let x
be a limit point of S. Every neighborhood of x intersects S.
Thus if F is any member of the collection of closed sets,
every neighborhood of x also intersects F, since FDOS. Thus
x € F', and so x € F, since F is closed. But x ¢ F for every
closed set of the collection, by the above reasoning. Hence
X belongs to the intersection, and thus to S. Hence S is
closed. B

Thus we may characterize the closure of a set as the

smallest closed set containing it.
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Theorem 1.5.3: 1Int A is the largest set contained in A

whose complement is closed.

Proof: Let S be a set such that SCA, and X-S is closed.

Since SCA, we have X-3 3X-A. Therefore Y-S DZX-A. But
since I-S is closad, we Fnow X-3S = X-S, and thus X-SDX-A.
Taking complements we find that SCX-X-A, or equivalently,
SCiInt A. 1

Theorem 1.5.4: A set is closed iff its complement is a

union of open sets.
Proof: Let F be any set for which X-F is a union of open
sets. Let x € F' and suppose x £ F. Then x ¢ X-F. Now
X must be in some open set H. But then H is a neighborhood
of x which does not intersect F. So x cannot belong to F'.
This is a contradiction.

Now suppose F is closed. Let x € X-F. Since x g F,
X 1s not a limit point of F, so there exists a neighborhood
H of x which does not intersect F. Let S be the union of
all such neighborhoods for the points of X-F. Clearly
SDX-F. But since none of the neighborhoods intersects
F, SNF = @#. Thus SCX-F. Hence we conclude X-F = 3,
which is a union of open sets..

Corollary 1.5.5: The complement of every open set is closed.

Corollary 1.5.6: Let H be an open set, and A any subset of X.

Then if HNA is empty, HNA is empty.
Proof: If ANH = @, then ACX-H. Thus ACX-H. But since
H is open X-H is closed, and X-H = X-H. Thus A CX-H, and

so HNA = g. §
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1.6 Continuity and the Separation Axioms

We now examine a notion of continuity, and the separation
axioms. The usual properties of set functions are assumed.

Definition 1.6.1: A function f:X»Y is continuous if B

open in Y implies X-f-1(B) = r£~1(Y-B) is closed in X.

Theorem 1.6.1: The following conditions on a transformation

f:X+Y are equivalent, where X and Y are covered spaces:
(1) f is continuous;
(2) If B is closed in Y, then f-1(B) is closed in X;
(3) T(AYDr(R) for all ACX;
(4) £-1(B)Dr-1(B) for all BCY;
(5) If x € X and V is a neighborhood of f(x) in Y,
then there is a neighborhood U of x in X such
that f£(U)CV,
Proof: (1) (2): If B is closed in Y, then Y-B is a union
of open sets, Y-B = {JHy. For each Hy,f-1(Y-Hq) = X-f-1(Hg)
is closed since f is continuous. Thus () (X-f-1(Hgy)) is
closed. Hence X-\Jf-1(Hgy) = X-f-1({JHy) is closed, or
X-r=1(y-B) = f~1(B) is closed.
Now if B is open in Y, Y-B is closed in Y. Thus f-1(Y-B)
= X-f-1(B) is closed in X.
(2)=(3): Let A be any subset of X. Since F(A) is

closed in Y, £-1(f(A)) is closed in X, by our hypothesis.
Now £=1(F(&aY) Dfr-1(£(a))DA, so r~1(F(A)Y)DA. Hence F(A)
Df(h).
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(3) »(4): Let B be any subset of Y. Then f"l(B)CZX,

so ff-1(B) Df(f-1(B)) by hypothesis. Now BDff-1(B), and
thus BDrr-1(B), which implies that BDf(F-1(B)) and thus
that £-1(B)D7r-1(B).

(4) >(5): If x € X and V is a neighborhood of f(x)
in Y, then Y-V is closed. Thus Y-V = Y-V, so £-1(¥-V)
=f-1(Y:V):)E:T?§:§T, Hence f-1(Y-V) is closed, or equiv-
alently X-f-1(y) is closed. Thus f£-1(V) is the union of
open sets of (X/M). Now f(x) e V implies x e £-1(V), so
there must be some particular open set H which contains x.
Now HC £=1(V), so f(H)CV.

(5)=*(2): Let B be closed in Y. Then Y-B is 5 union
of open sets of Y. Now for all x ¢ f=1(v-B), f(x) ¢ Y-B,
and hence f(x) belongs to some open set H from the union.
Therefore f(x) € HCY-B. H is a neighborhood of f(x), so
there exists a neighborhood A of x in X such that f(A)CH.
Thus ACf-1(H)Cf-1(Y-B). Hence for all x e £-1(Y-B)
there exists a neighborhood A of x in X such that aCf-1l(y-B),
Let S be the union of all such A's for every x ¢ f"l(Y—B).
Since each A is contained in f-1(Y-B), SCf-1(Y-B). But
since every x is covered, SDf-1(Y-B). Thus £-1(Y-B) is
a union of open sets of X. Hence X-£~1(Y-B) is closed, or
equivalently, X-(X-f~1(B)) is closed. Thus r~1(B) is a
closed set in X. §

Theorem 1.6.2: Suppose B open in Y implies f~1(B) is
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open in X. Then 1f B is closed in Y, £-1(B) is closed in X.

Proof: Let B be closed in Y. Then Y-B is a union of open
sets, and by hypothesis the inverse of each of these is
open in X. So the inverse of their union is a union of
open sets: f~1(Y-B) = X~-~1(B) is a unior. of open sets.
Hence f-1(B) is closed in X. }

In other wcrds, preservation of "openness" is sufficient
to insure that we have all of the five equivalent condiftiosns
of theorem 1.6.1, but none of the five conditions guarantees
preservation of"openness". An attempt to prove this for, say,
the second condition of theorem 1.6.1 leads directly to the
situation we must construct to provide a counterexample.

For if we let B be open in Y, Y-B would be closed, and thus
f-1(Y-B) = X-f-1(B) is closed. But this only assures us
that £=~1(B) is a union of open sets and not necessarily
itself an open set. Construction of such a situation is
straightforward.

Theorem 1.6.3: A covered space (X,M) is T1 iff every point

of X i1s closed.
Proof: Let x be a point of X which 1s not closed. Then
there is some y # x which is a limit point of x. Hence
every neighborhood of y contains x, so (X,M) is not Tq.

If (X,¥) is not Tp, there 1s a pair of distinct points,
x and y, such that, say, every neighborhood of y contains Xx.

Thus y is a limit point of x, and hence {x} is not closed. i
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Theorem 1.6.4: Let (X,¥) be a T covered space. Then

T5» Ty, Ty=T3, T3=>Tp, To=>Tq, and T1=Tq-
Proof: Tg=Ty: Let A, B be closed and disjoint.
ANB = ANB = ¢, and ANB = A(B = ¢. Hence (ENB)U(ANEB) = ¢,
and T) follows immediately.
Ty=T3: Let F be closed, x £ F. Since (X,¥) is Ty,
{x} is closed, and T3 follows using T).
T3=Tp: Let x and y be distinct points in X. Since
(X,#) is Tq, {x} is closed, and since y £ {x}, T, follows
using T3.
Top=Tq=Ty: The proof of these is trivial. !

Theorem 1.6.5: In a Hausdorff covered space convergence 1is

unique.

Proof: Let x,»x and xu4+y, y # X. There are neighborhoods
U and V of x and y respectively such that UNV = ¢. Now
Xn>X implies almost all the x,'s are in U and thus not in V.
But x,»y means almost all the xp's are in V. This is a

contradiction. |



Chapter II

Connectedness and Limit Points

In this chapter we investigate the nature of N-dis-
connected sets and some properties of the 1limit point
digraph, particularly with regard to generalized homeo-
morphisms. The usual definitions and elementary properties

from graph theory are assumed as in Ore [8].

2.1 M}-connected Sets

Definition 2.1.1: A nonempty subset A of X is said to be

H-disconnected if there exist two open sets U and V such
that ACUUYV and UNA # ¢, VNA # ¢, but (UNAYN(VNA) = ¢.
Otherwise A is said to be M-connected.

Theorem 2.1.1: A nonempty subset A is M-disconnected iff

it is of the form S1 U S where 51C.U-V, Sp(V-U, U and V

are open sets of the space, and S7 and Sy are nonempty.

Proof: Given the conditions it is clear that A is M-discon-
nected. Now let A be any]%—disconnected set. Then there
exist open sets U and V such that ACUUV, UNA # ¢, VNA # ¢,
and (UNA)N(VNA) = ¢. Since ACUUYV, we can write AC
(U=V) U (V=U) U(UNV) and thus A = (AN (U-V))U(ANV-U)) U

(AN (UNV)). But AN(UNV) = ¢. Thus A = S7US), where

17
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Sq = AN (U-V) and S, = AN (V-U), and clearly the conditions

above are satisfied. §

Theorem 2.1.2: Every subset of X is?}—connected iff the

open sets of (X;NO are linearly ordered by inclusion.
Proof: It is clear that all subsets in a covered space whose
open sets are linearly orderec by irnclusion are'chonnected,
for if ACUUYV, then either ACU or ACV, since UUV must
be equal to either U or V. Now suppose we do not have
linear order by inclusion. Then there exist two open sets
U and V neither of which is a subset of the other. Thus
U-V and V-U are not empty. Select x from U-V and y from
V-U. Then {x,y} is an N -disconnected subset using the
open sets U and V. il

We note that if in such a covered space the empty set
is open, then the open sets of the space form a topology.

Theorem 2.1.3: X has an?}—disconnected subset iff it

contains anf%}disconnected point pair.

Proof: An M-disconnected point pair is of course an M-
disconnected subset. Suppose A is an #-disconnected set.
Let U and V be two open sets which satisfy the requirements.
Since neither of UNA or VYA is empty we may select, say,

x from UNA and y from VN A. Then clearly x and y form

an W-disconnected point pair. |l

Theorem 2.1.4: If a subset A is W-connected, and ACBCA,

then B is ﬂ—connected.
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Proof: Suppose B is N-disconnected: BCUUV where U,V are
open, BNU # ¢, BAV # ¢, and (UNB)N (VNB) = ¢. Then
since ACB, we have (UNA)N(VNA) = ¢, which is a contra-
diction unless either A is not contained in UUV, or UNA = ¢
(VAA = ¢). But ACBCUUV. Now suppose UNA = ¢. Then
UNA = ¢ by corollary 1.5.6, and since BC A, UNB = ¢.

But by hypothesis this is not so. Hence UNA cannot be
empty. Similarly VNA # ¢. Thus we have the contradiction. |

Corollary 2.1.5: If A is¥-connected, then K is A-connected.

Corollary 2.1.6: If y is a limit point of x, then {x,y}

is 7.1 -connected.

Corollary 2.1.7: If the point pair {x,y} is ¥ -disconnected,

then x (y) cannot be a limit point of {x,y}, and thus x (y)
cannot be a limit point of the singleton set {y} ({x}).

Theorem 2.1.8: All point pairs of a covered space are

“H-disconnected iff the space is T1.

Proof: If (X B is T , for distigct points x and y there
are open neighborhoods U and V respectively such that y

¢ U and x £ V. Thus U and V ¥-disconnect x and y.

Now let x and y be any two distinct points. If they
are ﬂ%disconnected, there exist open sets U and V such that
{x,y}CUUV, {x,y}NU # ¢, {x,y}NV # ¢, and (UN {x,y}) N
(VO {x,y}) = ¢. Now UN{x,y} # ¢. Suppose x e U. Ify
e U, we have (Un{x,yHn N {x,y}) = {x,y}INVN{x,y} =

{x,y}N\V # ¢. This is a contradiction, so it must be that
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y £ U. Therefore y € V, and similarly we find that x g V.
Thus (X,¥) is T1. §

Clearly the covered space (X,¥), where X = {a,b}l and
W= {{a}, {a,b}}, is Tg. But we know this covered space
has no #-disconnected subsets. Hence there exists a Ty
covered space with no #-disconnected subsets. Now every
Tq1 covered space 1s also Ty, so there exist Ty covered spaces
for which every point pair is #-disconnected. Thus under

the Tg condition both extremes can occur.

2.2 The Limit Point Digraph

Definition 2.2.1: The limit point digraph L(X) corresponding

to the covered space (X,¥) is the ordered pair (X,E), where
E is the subset of X X X determined as follows: the ordered
pair (x,y) € E iff, in the context of the covered space,
the point y is a limit point of the singleton set {x}.

For example the digraph corresponding to the three
point covered space from Chapter I contains the diedges

(c,a) and (c,b).

a <4 b
A space covered entirely by singleton sets is represented

by a digraph which contains no diedges, and the space
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(X, {X}) on a nonempty set of n points is represented by
the complete digraph on n points.

As a further example, the digraph below represents
fhe covering of three points by the collection # = {{a},
{a,b}, {a,b,cl}}.

a b

Theorem 2.2.1: If (x,y) and (y,z) both belong to E, then

(x,z) also belongs to E.
Proof: Let (x,y) and (y,z) belong to E. Then every neigh-
bor hood of y contains x. But every neighborhood of z
contains y. Thus every neighborhood of z also contains
x, and hence (x,z) belongs to E.

We note that since x ¢ {x}', L(X) contains no loops.
It now follows that every minimal closed path of L(X)
contains either three diedges or an even number of diedges. !

Theorem 2.2.2: If {x} is open, then in L(X) the vertex

X has no adjacent incoming diedges. Furthermore {x} 1is
closed iff the vertex X has no outgoing diedges.
Proof: Suppose (x,y) € E. Then every neighborhood of y
contains x. Thus {y} is not open, for it would be a
neighborhood of y not containing x.

Now suppose x 1s a closed point. Then {x} contains
all its 1limit points. But x is the only point in {x},

and x is not a 1limit point of {x}, so {x}' = ¢. Thus x
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has no outgoing diedges.

If x has no outgoing diedges, {x} has no 1limit points,
and thus it is closed.

That the above is the best possible result is illus-
trated by the three point covered space, for the vertex c
has no incoming diedges, but the set {clis not open.

If the open sets of a covered space form a topology,
then the converse of the statement for open sets holds, for
the intersection of all open sets containing such a point
is open since X is finite, and since every other point is
excluded by at least one open set, the intersection must
be the point itself.

Corollary 2.2.3: A covered space (X,#) is Ty iff L(X)

contains no diedges.

Definition 2.2.2: A digraph is (weakly) connected if for

every pair of vertices there exists a path between themn,
disregarding the directions of the diedges.

Theorem 2.2.4: If L(X) is connected, then X is H-con-

nected.

Proof: Suppose X is not # -connected. Let X = UUV, U # ¢
and V # ¢, with (XAYU)N(XNV) = ¢. Let x be any point

in XNU = U, and y any point of XNV = V. Then clearly

x ¢ {y}' and y # {x}'. Thus there cannot be a diedge be-
tween x and y in L(X). But this means none of the vertices

associated with the points of XNU = U can be connected
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to any of the vertices associated with the points of
XNV = V. Thus L(X) cannot be connected. B

If a finite covered space is a topological space,
we can conclude that if X is #-connected then L(X) is
connected. This can be seen as an immediate corollary
to theorem 2.2.5, which is stated and proved subsequently.
That this is not generally true is illustrated by any
covered space of at least three points for which WLconsists
only of singleton sets.

We remark that some results similar to ours, but in
reference to topology on digraphs, have been obtained by
Bhargava and Ahlborn [3].

Definition 2.2.3: By a homeomorphism of a space (X,W)

is meant a biunique mapping f:X onto X such that both f
and £-1 satisfy the properties of theorem 1.6.1.

We now observe a connection between homeomorphisms
of a space (X,¥) and simplicial maps of the digraph L(X).
The class of covered spaces with which we are concerned
has the following property, which we denote henceforth as
property %: a point of X is a limit point of a subset of
X iff it is a limit point of some point of the subset.
As an example of such a space, let X = {a,b,c,d} and H
= {{a,b},{c,d}}. We now mention a more interesting col-

lection of spaces with this property.

Theorem 2.2.5: Every finite topological space has property x.
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Proof: Let x be a limit point of a subset A. Let S be
the intersection of all neighborhoods of x. Since X is
finite, S is open, and hence S intersects A-x. Since
every neighborhood of x contains S, x is a limit point
of every point in SN (aA-x).

We now state and prove our main result concerning
the 1limit point digraph.

Theorem 2.2.6- Let (X, ) be a covere. space with _roperty .

To every simplicial map s:L(X) onto L(X) there corresconds
a unique homeomorphism of (X,H), and conversely.

Proof: Let s be a simplicial map of L(X) onto L(X). This
function naturally induces a function h of X onto X by

h(x) = s(x) for all x € X. We show that both h and h1
satisfy the properties of theorem 1.6.1.

Let A¢ZX. We show that h(A)~_h(A). Let x € A'. Then

there is some point a € A such that x € {a}!. This means

(a,x) € L(X), so then (s(a),s(x)) & s(L(X)). Thus hi(x) ¢

th(a)}', and hence h(x) € h(A)'. Thus h(x) € n(2). So
h(A)(Ch(A).

By a similar argument we conclude (Yo n ta).

To prove the converse we show that homeomorpnlsms
preserve limit points 1in the covered space. Suppnose X 1s
not a limit point of y. Then there exists an oren set H
such that x € H and y £ H. Thus y ¢ X-H. Ience we have

h(x) € h(H) and h(y) & h(X-H) = X~-h(H), which is a closed
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set since h is a homeomorphism. Thus h(H) is a union of
open sets, one of which must contain h(x). And since the
union of these open sets does not contain h(y), no single
one can, and thus h(x) is not a limit point of h(y).

By a similar argument we conclude that if h(x) is not
a limit point of h(y), then h~th(x) = x is not a limit

point of h'lh(y) =y.
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